Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Front Immunol ; 13: 836449, 2022.
Article in English | MEDLINE | ID: covidwho-1785342

ABSTRACT

Background: Older adults have been disproportionately affected during the SARS-CoV-2 pandemic, including higher risk of severe disease and long-COVID. Prior exposure to endemic human coronaviruses (HCoV) may modulate the response to SARS-CoV-2 infection and contribute to age-related observations. We hypothesized that cross-reactive antibodies to SARS-CoV-2 are associated with antibodies to HCoV and that both increase with age. Methods: To assess SARS-CoV-2 unexposed individuals, we drew upon archived anonymized residual sero-surveys conducted in British Columbia (BC), Canada, including before SARS-CoV-2 emergence (May, 2013) and before widespread community circulation in BC (May, 2020). Fifty sera, sex-balanced per ten-year age band, were sought among individuals ≤10 to ≥80 years old, supplemented as indicated by sera from March and September 2020. Sera were tested on the Meso Scale Diagnostics (MSD) electrochemiluminescent multiplex immunoassay to quantify IgG antibody against the Spike proteins of HCoV, including alpha (HCoV-229E, HCoV-NL63) and beta (HCoV-HKU1, HCoV-OC43) viruses, and the 2003 epidemic beta coronavirus, SARS-CoV-1. Cross-reactive antibodies to Spike, Nucleocapsid, and the Receptor Binding Domain (RBD) of SARS-CoV-2 were similarly measured, with SARS-CoV-2 sero-positivity overall defined by positivity on ≥2 targets. Results: Samples included 407 sera from 2013, of which 17 were children ≤10 years. The 2020 samples included 488 sera, of which 88 were children ≤10 years. Anti-Spike antibodies to all four endemic HCoV were acquired by 10 years of age. There were 20/407 (5%) sera in 2013 and 8/488 (2%) in 2020 that were considered sero-positive for SARS-CoV-2 based on MSD testing. Of note, antibody to the single SARS-CoV-2 RBD target was detected in 329/407 (81%) of 2013 sera and 91/488 (19%) of 2020 sera. Among the SARS-CoV-2 overall sero-negative population, age was correlated with anti-HCoV antibody levels and these, notably 229E and HKU1, were correlated with cross-reactive anti-SARS-CoV-2 RBD titres. SARS-CoV-2 overall sero-positive individuals showed higher titres to HCoV more generally. Conclusion: Most people have an HCoV priming exposure by 10 years of age and IgG levels are stable thereafter. Anti-HCoV antibodies can cross-react with SARS-CoV-2 epitopes. These immunological interactions warrant further investigation with respect to their implications for COVID-19 clinical outcomes.


Subject(s)
COVID-19 , Aged , Aged, 80 and over , Antibodies, Viral , British Columbia/epidemiology , COVID-19/complications , COVID-19/epidemiology , Child , Humans , SARS-CoV-2 , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus , Post-Acute COVID-19 Syndrome
2.
Cell Rep ; 38(5): 110336, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1661802

ABSTRACT

Understanding vaccine-mediated protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is critical to overcoming the global coronavirus disease 2019 (COVID-19) pandemic. We investigate mRNA-vaccine-induced antibody responses against the reference strain, seven variants, and seasonal coronaviruses in 168 healthy individuals at three time points: before vaccination, after the first dose, and after the second dose. Following complete vaccination, both naive and previously infected individuals developed comparably robust SARS-CoV-2 spike antibodies and variable levels of cross-reactive antibodies to seasonal coronaviruses. However, the strength and frequency of SARS-CoV-2 neutralizing antibodies in naive individuals were lower than in previously infected individuals. After the first vaccine dose, one-third of previously infected individuals lacked neutralizing antibodies; this was improved to one-fifth after the second dose. In all individuals, neutralizing antibody responses against the Alpha and Delta variants were weaker than against the reference strain. Our findings support future tailored vaccination strategies against emerging SARS-CoV-2 variants as mRNA-vaccine-induced neutralizing antibodies are highly variable among individuals.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Cross Reactions , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Coronavirus/immunology , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , mRNA Vaccines/administration & dosage , mRNA Vaccines/immunology
3.
Virus Evol ; 7(2): veab061, 2021.
Article in English | MEDLINE | ID: covidwho-1467407

ABSTRACT

Four coronaviruses (HCoV-OC43, HCoV-HKU1, HCoV-NL63, and HCoV-229E) are endemic in human populations. All these viruses are seasonal and generate short-term immunity. Like the highly pathogenic coronaviruses, the endemic coronaviruses have zoonotic origins. Thus, understanding the evolutionary dynamics of these human viruses might provide insight into the future trajectories of SARS-CoV-2 evolution. Because the zoonotic sources of HCoV-OC43 and HCoV-229E are known, we applied a population genetics-phylogenetic approach to investigate which selective events accompanied the divergence of these viruses from the animal ones. Results indicated that positive selection drove the evolution of some accessory proteins, as well as of the membrane proteins. However, the spike proteins of both viruses and the hemagglutinin-esterase (HE) of HCoV-OC43 represented the major selection targets. Specifically, for both viruses, most positively selected sites map to the receptor-binding domains (RBDs) and are polymorphic. Molecular dating for the HCoV-229E spike protein indicated that RBD Classes I, II, III, and IV emerged 3-9 years apart. However, since the appearance of Class V (with much higher binding affinity), around 25 years ago, limited genetic diversity accumulated in the RBD. These different time intervals are not fully consistent with the hypothesis that HCoV-229E spike evolution was driven by antigenic drift. An alternative, not mutually exclusive possibility is that strains with higher affinity for the cellular receptor have out-competed strains with lower affinity. The evolution of the HCoV-OC43 spike protein was also suggested to undergo antigenic drift. However, we also found abundant signals of positive selection in HE. Whereas such signals might result from antigenic drift, as well, previous data showing co-evolution of the spike protein with HE suggest that optimization for human cell infection also drove the evolution of this virus. These data provide insight into the possible trajectories of SARS-CoV-2 evolution, especially in case the virus should become endemic.

4.
Innate Immun ; 27(6): 423-436, 2021 08.
Article in English | MEDLINE | ID: covidwho-1409426

ABSTRACT

Both innate immunity and acquired immunity are involved in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. The induction of Abs that neutralize the virus has been described, and certain Abs against endemic coronaviruses may cross-react with SARS-CoV-2. Detailed mechanisms to protect against the pandemic of SARS-CoV-2 remain unresolved. We previously reported that IgG Fc-binding protein (Fcγbp), a unique, large molecular weight, and mucin-like secretory Fc receptor protein, secreted from goblet cells of human small and large intestine, mediates the transportation of serum IgG onto the mucosal surface. In this review, we show that mucous bronchial gland cells and some goblet cells are immunoreactive for Fcγbp. Fcγbp traps the cross-reactive (both neutralizing and non-neutralizing) IgG bound to the virus and can consequently eliminate the virus from the mucosal surface to decrease viral loads. Fcγbp can also suppress immune overreaction by interfering with Fc-binding by macrophages and competing with complement fixation. Fcγbp secreted from mucin-producing cells of the airway functions as an important anti-infection mucosal defense. The Fcγbp-mediated mechanism can be a key factor in explaining why SARS-CoV-2 is less infective/lethal in children, and may also be involved in the unique Ab response, recurrent infection, and effects of serum therapy and vaccination.


Subject(s)
Antibodies, Viral/immunology , Bronchi/cytology , COVID-19/immunology , Cell Adhesion Molecules/immunology , Antibodies, Neutralizing , Cross Reactions , Humans , Immunity, Innate , Immunoglobulin G , Mucins , SARS-CoV-2/immunology
5.
Diagnostics (Basel) ; 11(8)2021 Aug 10.
Article in English | MEDLINE | ID: covidwho-1399240

ABSTRACT

Herd immunity is essential to control severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), especially in immunocompromised patients. Convalescent individuals should be vaccinated later due to vaccine shortage, as studies show that neutralizing antibodies generated during infection are stable for at least 6 months. Cellular immunity is also detectable for months. However, there is evidence of cross-reactivity of T cells with human endemic coronaviruses (HCoVs). Here, we show that cross-reactivity-which may prevent the specific detection of SARS-CoV-2-specific T cell responses-can be avoided if cells are stimulated with the N-terminus of the spike protein in IFN-γ ELISpot. In contrast to previous studies, we examined T-cell responses against all four known HCoVs using IFN-γ ELISpot in 19 convalescent volunteers and 10 fully vaccinated volunteers. In addition, we performed Spearman analyses to detect cross-reactivity of T cells. We observed no correlation between T-cell responses against SARS-CoV-2 and human endemic coronaviruses, either in the whole cohort or in the individual groups. The use of the respective stimuli could lead to a more accurate assessment of cellular immunity in recovered individuals. This testing procedure could help to define the best time point at which convalescents should receive SARS-CoV-2 vaccination.

6.
Front Immunol ; 12: 687449, 2021.
Article in English | MEDLINE | ID: covidwho-1332119

ABSTRACT

Despite RT-PCR confirmed COVID-19, specific antibodies to SARS-CoV-2 spike are undetectable in serum in approximately 10% of convalescent patients after mild disease course. This raises the question of induction and persistence of SARS-CoV-2-reactive T cells in these convalescent individuals. Using flow cytometry, we assessed specific SARS-CoV-2 and human endemic coronaviruses (HCoV-229E, -OC43) reactive T cells after stimulation with spike and nucleocapsid peptide pools and analyzed cytokine polyfunctionality (IFNγ, TNFα, and IL-2) in seropositive and seronegative convalescent COVID-19 patients as well as in unexposed healthy controls. Stimulation with SARS-CoV-2 spike and nucleocapsid (NCAP) as well as HCoV spike peptide pools elicited a similar T cell response in seropositive and seronegative post COVID-19 patients. Significantly higher frequencies of polyfunctional cytokine nucleocapsid reactive CD4+ T cells (triple positive for IFNγ, TNFα, and IL-2) were observed in both, seropositive (p = 0.008) and seronegative (p = 0.04), COVID-19 convalescent compared to healthy controls and were detectable up to day 162 post RT-PCR positivity in seronegative convalescents. Our data indicate an important role of NCAP-specific T cells for viral control.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Coronavirus 229E, Human/physiology , SARS-CoV-2/physiology , Adult , COVID-19 Serological Testing , Cells, Cultured , Convalescence , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Lymphocyte Activation , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology
7.
ACS Infect Dis ; 7(6): 1596-1606, 2021 06 11.
Article in English | MEDLINE | ID: covidwho-1135641

ABSTRACT

The presence of antibodies against endemic coronaviruses has been linked to disease severity after SARS-CoV-2 infection. Assays capable of concomitantly detecting antibodies against endemic coronaviridae such as OC43, 229E, NL63, and SARS-CoV-2 may help to elucidate this question. We developed a serum screening platform using a bead-based Western blot system called DigiWest, capable of running hundreds of assays using microgram amounts of protein prepared directly from different viruses. Characterization of the immunoassay for detection of SARS-CoV-2 specific antibodies revealed a sensitivity of 90.3% and a diagnostic specificity of 98.1%. Concordance analysis with the SARS-CoV-2 immunoassays available by Roche, Siemens, and Euroimmun indicates comparable assay performances (Cohen's κ ranging from 0.8874 to 0.9508). Analogous assays for OC43, 229E, and NL63 were established and combined into one multiplex with the SARS-CoV-2 assay. Seroreactivity for different coronaviruses was detected with high incidence, and the multiplex assay was adapted for serum screening.


Subject(s)
COVID-19 , Coronaviridae , COVID-19 Testing , Humans , Plant Extracts , SARS-CoV-2
8.
Front Immunol ; 11: 607918, 2020.
Article in English | MEDLINE | ID: covidwho-1021890

ABSTRACT

The inability of patients with CVID to mount specific antibody responses to pathogens has raised concerns on the risk and severity of SARS-CoV-2 infection, but there might be a role for protective T cells in these patients. SARS-CoV-2 reactive T cells have been reported for SARS-CoV-2 unexposed healthy individuals. Until now, there is no data on T cell immunity to SARS-CoV-2 infection in CVID. This study aimed to evaluate reactive T cells to human endemic corona viruses (HCoV) and to study pre-existing SARS-CoV-2 reactive T cells in unexposed CVID patients. We evaluated SARS-CoV-2- and HCoV-229E and -OC43 reactive T cells in response to seven peptide pools, including spike and nucleocapsid (NCAP) proteins, in 11 unexposed CVID, 12 unexposed and 11 post COVID-19 healthy controls (HC). We further characterized reactive T cells by IFNγ, TNFα and IL-2 profiles. SARS-CoV-2 spike-reactive CD4+ T cells were detected in 7 of 11 unexposed CVID patients, albeit with fewer multifunctional (IFNγ/TNFα/IL-2) cells than unexposed HC. CVID patients had no SARS-CoV-2 NCAP reactive CD4+ T cells and less reactive CD8+ cells compared to unexposed HC. We observed a correlation between T cell reactivity against spike of SARS-CoV-2 and HCoVs in unexposed, but not post COVID-19 HC, suggesting cross-reactivity. T cell responses in post COVID-19 HC could be distinguished from unexposed HC by higher frequencies of triple-positive NCAP reactive CD4+ T cells. Taken together, SARS-CoV-2 reactive T cells are detectable in unexposed CVID patients albeit with lower recognition frequencies and polyfunctional potential. Frequencies of triple-functional reactive CD4+ cells might provide a marker to distinguish HCoV cross-reactive from SARS-CoV-2 specific T cell responses. Our data provides evidence, that anti-viral T cell immunity is not relevantly impaired in most CVID patients.


Subject(s)
Antibodies, Viral/blood , Common Variable Immunodeficiency/immunology , Coronaviridae/immunology , Immunoglobulin G/blood , T-Lymphocytes/immunology , Adult , Aged , Common Variable Immunodeficiency/blood , Cross Reactions , Cytokines/immunology , Female , Humans , Male , Middle Aged , Young Adult
9.
J Infect Dis ; 222(9): 1452-1461, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-957721

ABSTRACT

BACKGROUND: The COVID-19 pandemic necessitates better understanding of the kinetics of antibody production induced by infection with SARS-CoV-2. We aimed to develop a high-throughput multiplex assay to detect antibodies to SARS-CoV-2 to assess immunity to the virus in the general population. METHODS: Spike protein subunits S1 and receptor binding domain, and nucleoprotein were coupled to microspheres. Sera collected before emergence of SARS-CoV-2 (n = 224) and of non-SARS-CoV-2 influenza-like illness (n = 184), and laboratory-confirmed cases of SARS-CoV-2 infection (n = 115) with various severities of COVID-19 were tested for SARS-CoV-2-specific IgG concentrations. RESULTS: Our assay discriminated SARS-CoV-2-induced antibodies and those induced by other viruses. The assay specificity was 95.1%-99.0% with sensitivity 83.6%-95.7%. By merging the test results for all 3 antigens a specificity of 100% was achieved with a sensitivity of at least 90%. Hospitalized COVID-19 patients developed higher IgG concentrations and the rate of IgG production increased faster compared to nonhospitalized cases. CONCLUSIONS: The bead-based serological assay for quantitation of SARS-CoV-2-specific antibodies proved to be robust and can be conducted in many laboratories. We demonstrated that testing of antibodies against multiple antigens increases sensitivity and specificity compared to single-antigen-specific IgG determination.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/blood , Coronavirus Infections/epidemiology , Immunoglobulin G/blood , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/epidemiology , Adaptive Immunity , Adult , Aged , Aged, 80 and over , Area Under Curve , COVID-19 , Case-Control Studies , Female , Humans , Immunoassay , Male , Middle Aged , Netherlands/epidemiology , Nuclear Proteins/immunology , Patient Acuity , ROC Curve , SARS-CoV-2 , Seroconversion , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology
10.
Int J Infect Dis ; 101: 121-125, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-797460

ABSTRACT

OBJECTIVES: The SARS-CoV-2 epidemic presents a poorly understood epidemiological cycle. We aimed to compare the age and weekly distributions of the five human coronaviruses, including SARS-CoV-2, that circulated in southeastern France. METHODS: We analyzed all available diagnoses of respiratory viruses, including SARS-CoV-2, performed between 09/2013 and 05/2020 at the University Hospital Institute Méditerranée Infection in Marseille, southeastern France. RESULTS: For SARS-CoV-2, positive children <15 years of age represented 3.4% (228/6,735) of all positive cases, which is significantly less than for endemic coronaviruses (46.1%; 533/1,156; p < 0.001). Among 10,026 patients tested for SARS-CoV-2 and endemic coronaviruses in 2020, children <15 years represented a significantly lower proportion of all positive cases for SARS-CoV-2 than for endemic coronaviruses [2.2% (24/1,067) vs. 33.5% (149/445), respectively; p < 0.001]. Epidemic curves for endemic coronaviruses and SARS-CoV-2 in 91,722 patients showed comparable bell-shaped distributions with a slight time lag. In contrast, the age distribution of endemic coronaviruses and 14 other respiratory viruses differed significantly compared to that of SARS-CoV-2, which was the only virus to relatively spare children. CONCLUSIONS: We observed for SARS-CoV-2 a temporal distribution resembling that of endemic coronaviruses but an age distribution that relatively spares the youngest subjects, who are those the most exposed to endemic coronaviruses.


Subject(s)
Coronavirus/isolation & purification , SARS-CoV-2/isolation & purification , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , Child , Child, Preschool , France , Humans , Infant , Infant, Newborn , Middle Aged , Young Adult
11.
J Infect Dis ; 223(3): 409-415, 2021 02 13.
Article in English | MEDLINE | ID: covidwho-636675

ABSTRACT

BACKGROUND: Although the mechanisms of adaptive immunity to pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are still unknown, the immune response to the widespread endemic coronaviruses HKU1, 229E, NL63, and OC43 provide a useful reference for understanding repeat infection risk. METHODS: Here we used data from proactive sampling carried out in New York City from fall 2016 to spring 2018. We combined weekly nasal swab collection with self-reports of respiratory symptoms from 191 participants to investigate the profile of recurring infections with endemic coronaviruses. RESULTS: During the study, 12 individuals tested positive multiple times for the same coronavirus. We found no significant difference between the probability of testing positive at least once and the probability of a recurrence for the betacoronaviruses HKU1 and OC43 at 34 weeks after enrollment/first infection. We also found no significant association between repeat infections and symptom severity, but found strong association between symptom severity and belonging to the same family. CONCLUSIONS: This study provides evidence that reinfections with the same endemic coronavirus are not atypical in a time window shorter than 1 year and that the genetic basis of innate immune response may be a greater determinant of infection severity than immune memory acquired after a previous infection.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Coronavirus/isolation & purification , Adult , Betacoronavirus , COVID-19/epidemiology , COVID-19/immunology , Coronavirus/genetics , Coronavirus Infections/diagnostic imaging , Endemic Diseases , Humans , Immunity, Innate , New York City/epidemiology , Respiratory Tract Infections/diagnostic imaging , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , SARS-CoV-2 , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL